	Mir	nami Ky	ushu	Uni	versity	Sylla	Syllabus				
シラバス年度	2021 開講キャンパス			都城	キャンパス		開設	学科	環境	環境園芸学科	
科目名称 [英語名称]	生物統計学 [Bi	iostatistics]					系経験 担当		アクティブ ラーニング		
科目コード	217310	授業形態	講	義	単位数		2	配	当学年	3年次	
授業概要	姜 環求 学位授与の方針 DP1(1) DP1(2) DP2(1) まず、生物に関する様々な特性を測定し、その測定値を整理して当該生物の特徴を表・グラフ・数値で示すことを学ぶ。ところが、私たちが観察測定したそれは(標本は)、有限または無限にある興味の対象の(母集団の)一部に過ぎない。従って標本から母集団に関する特徴を推論する必要がある。授業では各種観察および実験の結果から(標本から)得た知見を一般化する多様な方法(統計的推論)を学ぶ。										
関連する科目	数学										
授業の進め方と方法	統計学の基礎理論を学んだ後、受講生各自がR(統計分析ソフトの一種)で分析し、解釈する。										
授業計画	1. 導入:統計学の概要とR基礎。 2. 記述統計学: データの図表・統計値。 3. 統計的推論の基礎: 確率変数と標本推定値(平均・分散・比率)。 4. 標本平均と比率の確率分布: 二項分布・正規分布・t分布。 5. 標本分散の確率分布: 大自乗分布とF分布。 6. 一とつ母数に関する推論: 母集団の平均・分散・比率) の区間推定と検定。 7. 二つ母数の差検定: 二つ母数(平均・分散・比率)間の差検定。 8. 3つ以上の母数の差検定: 一元配置分散分析と多重比較。 9. 3つ以上の母数の差検定: 二元配置分散分析と多重比較。 10. 非母数検定: 三つ母集団の差検定。 11. 非母数検定: 三つ以上母集団の差検定。 12. χ自乗検定: 適合度検定。 13. χ自乗検定: ウロステーブル分析。 14. 二変数間の関係検定: ピアソン相関係数とスピアマン相関係数の検定。 15. 回帰分析: 単回帰及び重回帰分析。										
授業の到達目標	調査や実験で得たデータを統計的に推論できること										
授業時間外の学修	各自がデータを取り、分析してみる										
課題に対する フィードバック	与えられた課題	を解説する			評価方法		果題のレ 100%	ッポートの 扱	昆出とコメント(こ対する返答	
テキスト	なし(講義ノートを配布)										
参考書	Roland Ennos, Statistical and Data Handling Skills in Biology-4th ed,Pearson。2nd ed.の日本語訳:打波 守 ほか「すぐできる生物統計」羊土社。丸山 明 ほか「らくらく生物統計学」ムイスリ出版。 石村貞夫「分散分析のはなし」東京図書。										
備考	指示があるとき、ノートパソコンを持参すること										